Contoh soal:
Jumlah n suku pertama dari suatu deret adalah Sn = 3n^2 + n. Maka suku ke-11 dari deret tersebut adalah…
Tentu ada banyak cara untuk menyelesaikan soal ini.
Cara pertama, tentukan dulu rumus Un kemudian hitung U11. Cara ini cukup panjang. Tetapi bagus Anda coba untuk meningkatkan keterampilan dan pemahaman konsep deret. Rumus Un dapat kita peroleh dari selisih Sn – S(n-1) .
Cara kedua, sedikit lebih cerdik dari cara pertama. Kita tidak perlu menentukan rumus Un. Karena kita memang tidak ditanya rumus tersebut. Kita langsung menghitung U11 dengan cara menghitung selisih
S11 – S10 = U11
[3(11^2) + 11] – [3(10^2) + 10]
= 3.121 – 3.100 + 11 – 10
= 3.21 + 1
= 64
Cara ketiga, adalah rumus matematika paling cepat dari kedua rumus di atas. Tetapi sebelum menerapkan cara ketiga, kita harus memahami konsepnya terlebih dahulu dengan baik.
Are you ready?
Bentuk baku dari n suku pertama deret aritmetika adalah
Sn = (b/2)n^2 + k.n
Un = b(n-1) + a
a = S1 = U1
Anda harus pahami konsep di atas dengan baik. Cobalah untuk beberapa soal yang berbeda-beda. Tanpa pemahaman konsep yang baik, rumus cepat ini akan berubah menjadi rumus berat.
Dengan hanya melihat soal (tanpa menghitung di kertas) bahwa
Sn = 3n^2 + n
Kita peroleh
b = 6 (dari 3 x 2)
a = 4 (dari S1 = 3 + 1)
U11 = 6.10 + 4 = 64 (Selesai)
Semua perhitungan di atas dapat kita lakukan tanpa menggunakan alat tulis. Semua kita lakukan hanya dalam imajinasi kita. Ulangi beberapa kali. Anda pasti akan menguasainya dengan baik.
Trik untuk menguasai rumus cepat matematika adalah kuasai pula rumus standarnya – rumus biasanya. Dengan menguasai dua cara ini Anda akan semakin terampil menggunakan rumus cepat matematika.
Bagaimana pendapat Anda?
Salam hangat….Selamat berjuang Kawan!
http://apiqquantum.com
Tidak ada komentar:
Posting Komentar